Bridge Brief Broadcast Archive

Back to Bridge Brief Archive Index

June 25, 2000
Can You Make 6NT? and Hand Evaluation - Shortness

Can You Make 6NT?

If you counted the number of times a player that picks up 30 HCP points and winds up getting a minus score, I am sure it more often that not. When you hold a good hand, human nature and emotion tend to get in the way. This problem (devised by Paul Lukacs of Israel) falls into that category. South (with fire in his eyes) drives the hand to 6NT. If you were South, would your play live up to your bidding? Can you guarantee 12 tricks against any distribution?

North
spade.gif (842 bytes)J10964
heart.gif (841 bytes)109642
diamond.gif (837 bytes)Q64
club.gif (841 bytes)
South (you)
spade.gif (842 bytes)AQ
heart.gif (841 bytes)AKJ
diamond.gif (837 bytes)AKJ10
club.gif (841 bytes)AKJ10

The opening lead is the diamond.gif (837 bytes)9. Before you get carried away, a comment. You must assume that the opponents are not dummies. They will not be very cooperative. For example, here is a possible solution:

You win the diamond in hand (retaining the diamond.gif (837 bytes)Q as an entry) and lead the spade.gif (842 bytes)A and then the spade.gif (842 bytes)Q. Easy hand. You say, "After the defenders win the spade.gif (842 bytes)K then I have 12 tricks. What an easy problem!"

You are right, if a defender wins the spade.gif (842 bytes)K then you have 12 tricks (4 spades, 2 hearts, 4 diamonds, and 2 clubs). What is wrong with your solution? The defender will not win the spade.gif (842 bytes)K! Now where are you?

You must find a solution that will work against any distribution and against any defense. If you think you have it, then test it by considering what the opponents might do to thwart your efforts. If your solution depends a successful finesse then I promise it is not correct.

These types of problems are great training for your thinking process when playing the game. Your mind set should always be how can I make this hand against any distribution and against any defense?

The answer:

I gave you as much of a hint as I could! Win the opening lead in hand (leaving the diamond.gif (837 bytes)Q as an entry). Lead the spade.gif (842 bytes)Q. The defenders cannot win this or you will have your 12 tricks. After the spade.gif (842 bytes)Q holds, lead the heart.gif (841 bytes)J! They cannot win this either or you will have 12 tricks (2 spades, 4 hearts, 4 diamonds, 2 clubs). Now lead the club.gif (841 bytes)A, club.gif (841 bytes)K, and another club to establish your 12th trick!

The secret lies in maintaining control over both spades and hearts while you establish your tricks. cashing the top honors first in either suit only opens you to losing two tricks.

Easy game this bridge. You just have to learn to think outside of the box!

-----------------------------------------------------

Hand Evaluation - Shortness

A couple of questions from Bridge Companion readers about the use of shortness count in hand evaluation:

Question:

I notice that in your publication you have opener using the shortness counting method after a fit has been determined. Should opener be allowed to use the "shortness" method for hand evaluation? Isn’t this something reserved only for dummy or responder?

Answer:

You are right, in that the emphasis in some texts is on allowing only dummy to evaluate using the shortness method. I slightly disagree. Why should a singleton diamond in declarer's hand be worth any less than a singleton diamond in the dummy (as long as we have a trump fit)? The basis for the "dummy only" point of view is that trumping losers in the short hand gains a trick. Trumping a card in declarer's hand rarely gains a trick (because declarer has already counted the tricks for length in the trump suit). I think that this approach is a little too simplistic. The basis for my point of view is that the trump suit really provides two significant things. First is the ability to trump losers. Second is just the ability to control the play. The trump suit can provide a control over a side suit and gives declarer the time needed to establish the required tricks. If declarer has singleton diamond, the defense cannot take more than one diamond trick before declarer gains the lead. Using my method of both partners counting for shortness means that you and partner will bid a little more aggressively when you have a trump fit. Truthfully, that is exactly the time when you should be aggressive. Hands with a fit usually play at or above their potential. A trump fit enables declarer to potentially use all five of the trick development methods to his or her advantage.

North
spade.gif (842 bytes)KJ54
heart.gif (841 bytes)5
diamond.gif (837 bytes)A96
club.gif (841 bytes)107543
South (you)
spade.gif (842 bytes)AQ10732
heart.gif (841 bytes)A764
diamond.gif (837 bytes)J32
club.gif (841 bytes)

 

West North East South
1spade.gif (842 bytes)
Pass 3spade.gif (842 bytes) Pass ???

If only North is allowed to use the shortness method then South will never accept the invitation to game (hand still values 13) and an easy game will be missed. If allowed to use the shortness method, South re-evaluates to 15 and readily accepts the game invitation. Game is easy with 6 spades, 1 diamond, 1 heart, and 2 hearts ruffs in the dummy.

Question:

I have a question in regard to the Bidding Challenge on page 6 of your sample newsletter. The hands in question are:

[1][B]

West East
spade.gif (842 bytes)AJ108 spade.gif (842 bytes)K7
heart.gif (841 bytes)KJ87 heart.gif (841 bytes)A943
diamond.gif (837 bytes)K65 diamond.gif (837 bytes)QJ73
club.gif (841 bytes)Q5 club.gif (841 bytes)1097
West North East South
1diamond.gif (837 bytes) Pass 1heart.gif (841 bytes) Pass
2heart.gif (841 bytes) Pass 3heart.gif (841 bytes) Pass
4heart.gif (841 bytes) Pass Pass Pass

 

[1][C]

West East
spade.gif (842 bytes)AJ108 spade.gif (842 bytes)K742
heart.gif (841 bytes)KJ87 heart.gif (841 bytes)2
diamond.gif (837 bytes)K65 diamond.gif (837 bytes)QJ103
club.gif (841 bytes)Q5 club.gif (841 bytes)KJ107
West North East South
1diamond.gif (837 bytes) Pass 1spade.gif (842 bytes) Pass
2spade.gif (842 bytes) Pass 4spade.gif (842 bytes) Pass
Pass Pass

In hand [1][C] East, the responder, rebids 4spade.gif (842 bytes). It seems to me that he should rebid 3spade.gif (842 bytes) inviting opener to go to game just as he rebid 3heart.gif (841 bytes) in [1][B]. In both cases the responder has 10 high card points and in both cases the opener indicated he had a minimum hand 13-16 points. Apparently there is an explanation. Would you enlighten me?

Answer:

Hand evaluation using the Work Point Count can be calculated two ways. There are two features of a bridge hand that carry with them the potential for taking tricks. The first and foremost is honors and the second is distribution. You can measure distribution either by adding for your long suits or by adding for your short suits. Length and shortness in any hand are really the same thing. Since the hand must contain exactly 13 cards, you must make one suit shorter if you are to make another suit longer and vice versa. When should you evaluate based upon length and when should you evaluate based upon shortness? Note that you cannot count for length and shortness at the same time. That would be counting the same feature twice. The length feature is of value in both no trump contracts and in trump contracts. The shortness feature is of value only in trump contracts. The answer is to count based upon the length feature until that point in the auction when you become aware that you and partner have a clear trump fit. At that stage you should re-evaluate your hand based upon the shortness feature. This applies to both opener and responder. The recommended adjustments are as follows:

Length Method

Add 1 point for each card over four in each and every suit.
5 card suit = 1 pt.
6 card suit = 2 pts.
7 card suit = 3 pts.

Shortness Method
For each side suit (not trumps!) Add as follows:
Doubleton = 1 pt.
Singleton = 3 pts.
Void = 5 pts.

Hand B

Length Method 10 HCP + 0 for distribution = Total of 10 points
Shortness Method 10 HCP + 1 for distribution = Total of 11 points

Hand C

Length Method 10 HCP + 0 for distribution = Total of 10 points
Shortness Method 10 HCP + 3 for distribution = Total of 13 points

As you can see, at the point in the auction when Hand B bids 3heart.gif (841 bytes), the hand is worth 11 points and an invitational bid. At the point in the auction when Hand C bids 4spade.gif (842 bytes), the hand is worth 13 points and a commitment to game. Both hands improved in potential during the auction. Hand B by 1 point and Hand C by 3 points. Hope this explanation helps.

Thanks!
Gary King

2000 The Bridge Companion. All rights reserved.